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Abstract

Although a number of spawning populations of spring/summer run chinook salmon in the
Columbia River basin have declined, a search for covariability among different locations using
several different combinations of spawner and recruitment data indicates no basin-wide
covariability.  There is, however, significant covariability among index populations within the
three main sub-basins: the Snake River, the Mid Columbia and the John Day River.  This
covariability was much stronger and more consistent in data reflecting survival (i.e., the natural
logarithm of recruits per spawner, the residuals from a fit to the Ricker stock-recruitment model)
than in data reflecting abundance (i.e., spawning escapement).  We also tested a measure of
survival that did not require knowing the age structure of spawners, the ratio of spawners in one
year to spawners four years earlier, and found that they gave similar results.  Because intra-series
correlation was substantial and varied with data type, we accounted for intra-series correlation in
judging the significance of correlations.  To reduce the errors involved in computing the effective
degrees of freedom, we computed a generic effective degrees of freedom for each of several data
types.

Introduction

Covariability between abundance at different locations is a valuable source of information
regarding the dynamic structure and physical forcing of spatially distributed populations (e.g.,
Campbell and Mohn, 1983, Cohen et al. 1991,  Elner and Campbell 1991, Koslow et al. 1987).
Statistical description of the observed covariability over space provides the basis for formulating
hypotheses that can then be tested through further analyses and specific measurements or
experiments.  Such analyses have employed a variety of methods and types of data.  Here we
describe a simple approach to description of covariability among stocks distributed over space, in
which we take special care to account for the effects of covariability within series on the
significance of covariability among series.  The specific application is to spring/summer runs of
chinook salmon (Oncorhynchus tshawytscha) in the Columbia River basin.

A number of stocks spring/summer chinook salmon on the Columbia River have declined in
the past 20 years, and several of them are listed as threatened under the US Endangered Species
Act.  Management to reverse these declines requires quantitative description of the cause(s) of the
decline.  Description of causes and evaluation of the effectiveness of various management
approaches are the primary goals of the Program for the Analysis and Testing of Hypotheses
(PATH).  PATH has taken a multi-pronged approach to these questions using a variety of
methods and data sources.  The analysis described here is an initial exploratory part of that
process.  Here we test the hypothesis that there has been a similar trend in the state indicators for
spring/summer run chinook salmon populations throughout the Columbia River basin. The
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management implications of the hypothesis are: if all stocks (listed and otherwise) show similar
patterns in escapement, recruitment, or other state variables, then some common forcing function
(e.g., ocean conditions) would be the most likely candidate for the (joint) decline. On the other
hand, if there are systematic differences among races, deems, sub-basins or stocks, then causal
mechanisms on smaller spatial scales are more likely to be associated with the observed historical
patterns.

Detecting Covariability

Covariability between time series can be detected by a variety of statistical methods (e.g.,
regression, various forms of nonparametric correlation).  The various methods of estimating
covariability are subject to a number of common problems:  intra-series correlation, multiplicity of
tests, use of proxy variables, introduction of covariability in pre-processing and others (Kope and
Botsford 1990, Botsford and Brittnacher 1992). Here we use one of the most common
descriptors of covariability, the Pearson product-moment correlation coefficient.  Using this
statistic to detect covariability between time series involves computing the correlation between the
series, then testing to determine whether that value is statistically significant, i.e., whether it is
large enough that there is a low probability that it arose from chance alone. We account for
problems that arise from intraseries correlation to determine the relative level of confidence we
can have in each specific results, but we do not deal with the other problems which are more or
less common to all of the computed correlations.  We view the results as identification of pattern,
rather than a proof of causality.  We use a probability level of 0.05, and assume the correlation
coefficient has a Gaussian distribution when it is near zero.

A number of different expressions have been used to estimate the variance of the estimated
correlation coefficient in the presence of intraseries correlation (Bayley and Hammersley 1946,
Chelton 1983, 1984, Drinkwater and Myers 1987, Kope and Botsford 1990, Botsford and
Brittnacher 1992, Botsford and Wainwright, in prep.).  Here we use the general expression from
Botsford and Wainwright (in prep.)
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where N is the length of the time series and the ρxy(t) is the true correlation between the two time

series, x and y at lag t.  Many of the ways of estimating this quantity from the series themselves
involve substituting estimated values of correlations for the true correlations in various
simplifications of this expression (Bayley and Hammersley 1946, Chelton 1983, 1984, Drinkwater
and Myers 1987, Kope and Botsford 1990, Botsford and Brittnacher 1992, Botsford and
Wainwright, in prep.).

When the null hypothesis is no correlation between the series (i.e., ρxy = 0), only the first
term [i.e., the one involving rxx(v)ryy(v)] is nonzero (Kope and Botsford 1990).  The expression
involving only that term can be used to estimate the variance of the estimated correlation
coefficient, or the expression can be rearranged to express the effective number of degrees of
freedom in the time series, i.e., the effective sample size (cf., Bayley and Hammersley 1946),
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Note that when there is no auto-correlation in either of the series, the effective number of degrees
of freedom is the length of the series, N.

There are several important consequences of this dependence of the standard error of the
estimate of a correlation coefficient on intra-series correlation.  From the above expressions it is
apparent that as the degree of intraseries correlation increases, increasingly positive correlation
between points at various lags will lead to a larger variance and a lower number of degrees of
freedom.   If this dependence is ignored, i.e., if the intra-series correlation is not accounted for,
the frequency at which a significant correlation would be falsely detected (i.e., a Type I error)
increases as the intra-series correlation increases.  For example, as time series vary from a rapidly
changing series of independent points to a slowly changing series such as a moving average of 4
adjacent independent points, the frequency of false detection of a significant result varies from the
specified value of 0.05 to a frequency of 0.26.  To avoid this increase in the number of spurious
correlations identified as real correlations, one would account for intra-series correlation using
equation (1) or (2).

The effect of this correction can be seen by examining the dependence of the value of
correlation coefficient required to maintain a fixed error level on intra-series correlation as
reflected by the number of independent degrees of freedom.  A plot of the value of estimated
correlation coefficient required to be significant at the 0.05 level versus the effective number of
degrees of freedom of the series (Figure 2) shows that as the effective number of degrees of
freedom decreases, the value of correlation required for a significant result increases substantially.

Because the correction that must be made for intraseries correlation leads to a higher
required level of interseries correlation, it limits the number of true relationships we can detect to
only the strongest.  The implications of the above results for the detection of relationships
between time series population for different populations follow from the relationship in Fig. 2. To
correct for the intra-series correlation in slowly varying time series, we require a higher value of
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correlation for statistical significance.  Thus, a certain level of actual correlation between two
series (e.g., 0.5) would be detectable (i.e., could be identified as significant) in rapidly varying
time series (e.g., with 16 degrees of freedom or more, for 0.5), but not in slowly varying series,
with fewer degrees of freedom.

For very slowly varying time series, it is extremely unlikely that real covariability between
series will be detected.  For example, the number of degrees of freedom in linear trends is
approximately 2 (i.e., the number of parameters required to express a straight line), hence
covariability between two time trends would require an estimated correlation coefficient near 1.0
which is very unlikely given the amount of measurement error and other confounding noise
typically associated with these series.  For this reason, variability on such slow time scales is
virtually undetectable.  Linear trends reflect the slowest time scale, but similar, lesser, effects
would occur as the data varied more rapidly.  For example, series dominated by half a period of a
cyclic fluctuation would have only a few more degrees of freedom than a linear trend, and so on.
Covariability in time series involving linear trends or up to one period of a cyclic fluctuation
would be virtually undetectable, while covariability involving only a few cycles would be detected
only if it were very strong.

In spite of the fact that they are not likely to contribute a significant result, low frequency
signals such as linear trends can dominate computed correlations between two time series.  This
can obscure relationships on shorter time scales.  For example, if there were a true inverse or
negative  relationship between two populations on rapidly varying time scales, yet both were
declining slowly for other reasons, the computed correlation between them could be positive.  The
problem with this result is that the computed correlation is due to variability on an essentially
undetectable time scale (i.e., a linear trend), while the true correlation remains undetected.  To
prevent variability on undetectable time scales from occluding variability on detectable time
scales, linear trends are frequently removed from time series before correlations are computed
(e.g., Botsford and Kope 1992).

Another means of removing low-frequency variability from time series is first differencing.
This removes low frequencies by effectively high-pass filtering the series (e.g., Thompson and
Page 1989).  The problem with this approach is that the consequent computation of correlations
between series then is focused on covariability of the first differences of the two variables, when
first differences may not be biologically meaningful.  For example, the first difference of an
abundance time series is a confounded combination of mortality and recruitment.  For this reason,
we do not employ first differencing here.

Columbia River Data

We analyze data for spring/summer, yearling migrant (stream-type) chinook salmon from
the following areas in this analysis (Fig. 1):

• John Day basin (Middle Fork, North Fork/Granite, and Upper Mainstem).

• Bear Valley/Elk Creek, Marsh Creek and Sulphur Creek in the Middle Fork of the
Salmon.

• Wind and Klickitat, above Bonneville Dam but below other impoundments.
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• Deschutes/Warm Springs, above two impoundments.

• Entiat, Wenatchee, and Methow subbasin in the mid-Columbia; and

• Poverty Flat and Johnson Creek summer chinook in the South Fork of the Salmon
River.

• Minam River spring chinook.

• Imnaha River spring/summer chinook.

We group the seven Snake stocks (Middle Fork Salmon, Poverty Flat/Johnson, Minam, and
Imnaha) into a single sub-basin.  We treat the mid-Columbia and the John Day streams each as
separate sub-basins, and group Deschutes/Warm Springs, Wind and Klickitat together as "lower-
river stocks".

The data result from spawner at age estimates based on redd counts and subsampling for
age determination from scales (Petrosky, et al. 1997).  These data are based on a number of
assumptions and poorly known parameters such as peak index area redd count, total spawning
area/index area, spawners/redd, and pre-spawning mortality, none of which are known with
complete certainty.  From these data we computed several different variables with different
statistical and biological characteristics.  The natural logarithm of the number of recruits resulting
from each spawner is a commonly used population characteristic in salmon.  To remove  potential
effects of density-dependence from this relationship, we also computed the residuals about a
regression based on the Ricker stock-recruitment relationship (i.e., ln(R/S) regressed on S).
Lastly, to determine whether the analyses done here could be done using spawning abundance
alone (i.e., without age structure from each year), we used the ratio of spawners in one year to
spawners 4 years earlier.  This would be a rough approximation of recruits per spawner since ages
at spawning vary from approximately one-third at age 4 and two-thirds at age 5 on Salmon River
steams to 75% age 4 and 25% age 5 in the John Day streams.

The different types of population data have different statistical characteristics (Fig. 3).
The most direct data are annual estimates of spawner abundance, which are based on redd counts
in index streams.  The spawner data is the most direct reflection of the population status because
it does not depend on the assumptions involved in ageing and run reconstruction.  However, it is
inherently limited.  Because it is the sum of several random variables, i.e., of several year classes,
it contains a high degree of intra-series correlation. The residuals from detrending spawning
abundance will have less intra-series correlation, hence will be a useful indicator of covariability
on more detectable time scales.  The natural logarithm of the number of recruits generated per
spawner generating them (i.e., ln(R/S)), will be even more useful for detecting covariability
because it inherently involves a natural form of differencing (ln R - ln S).  It will have a higher
number of degrees of freedom, but will depend to some degree on the assumptions involved in
ageing and run reconstruction.  The residuals from a fit to a Ricker stock-recruitment model will
have a similar, high number of degrees of freedom.  The ratio of spawners at one time to those A
years earlier, where A is the age at which most of the spawning occurs, may approximate this
variable, and would be available for populations for which run reconstructions were not available.
Here we approximate that variable with the ratio of spawners at one time to spawners four years
earlier.
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The slow variability in some of these series limit the results that can be expected from
analyses of covariability between the population time series.  Analyses of abundance time series
may show common declines in abundance, but it could be difficult to demonstrate that these are
statistically significant declines because they are on slowly varying, marginally detectable time
scales.  Residuals about linear trends in abundance will be good indicators of covariability on
more rapidly varying and hence more detectable time scales.  Analyses of the time series reflecting
survival, ln (R/S) and St+4/St, will vary more rapidly than abundance, hence will be useful
indicators of covariability on detectable time scales.  However, since a slow decline in survival is
still unlikely to be detectable, a significant result will require changes on rapidly varying time
scales.

Estimating Effective Degrees of Freedom

To test for significant correlations between the various series, we would ideally adjust the
level of correlation required for a significant result, based on computations from equation (1) or
equation (2).  The problem with this approach is that the true number of degrees of freedom is
difficult to estimate.  While we can readily discuss the effects of the number of degrees of freedom
in idealized time series (e.g., straight line trends, cycles, moving averages over various periods)
empirical determination of the number of degrees of freedom in an actual time series is difficult.
The various methods for estimating the standard error of computed correlations (i.e., Bayley and
Hammersley 1946, Chelton 1983, 1984, Drinkwater and Myers 1987, Kope and Botsford 1990.)
have the fundamental limitation that they depend on the data in each series (i.e., a single
realization of each process).  We do not know the values of the true correlations ρxx, ρyy, and ρxy
at various lags in equations (1) and (2), hence must estimate them from these data. This inevitably
leads to error in the estimate of the standard error of the estimate of the correlation coefficient or
equivalently, the effective number of degrees of freedom.

For the chinook salmon on the Columbia River, we take a different approach.  We have 16
series of each different type of data (e. g. 1/stock), hence we can estimate the effective number of
degrees of freedom using several series of each data type, then averaging them to obtain a generic
number of degrees of freedom for that type.  To the degree that the different series within each
data type are similar in terms of intra-series correlation, this gives us a better estimate of effective
degrees of freedom than that based on a single series.

We estimated the effective number of degrees of freedom using a modified version of
equation (2), which is less susceptible to variability in the estimates of the values of ρxx and ρyy

from the limited data.  Because higher values of the index of summation involve values of ρxx and
ρyy at higher lags, for which estimates will be less precise because they are based on fewer data
points, we limited the summation to a number less than N.  We chose the limit of the summation
based on performance of each using simulated data.  We chose the value that resulted in a
probability of  Type I error closest to the specified error (we used 0.05).

In addition to various limits on the summation, we evaluated two different approaches to
determining effective degrees of freedom for each pair of series.  In one method we computed the
effective degrees of freedom of each single series, then conservatively chose the smaller number
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of degrees of freedom (i.e., using ρxx2 in equation (2)).  In the second method we computed the

effective degrees of freedom from pairs of series (i.e., using ρxxρyy in equation (2)).

The results of these trials indicate summing up to j=10 in equation (2) using pairs of
series, rather than single series give reasonable probabilities of type I error (Table 1).  Single
series estimates over-estimate the variance leading to an under-estimate of the effective degrees of
freedom, a high significance threshold and a low probability of Type I error.  Of the paired series
estimates, the variance is underestimated at j=5 and overestimated at j=30, with the consequent
expected changes in probability of Type I error.  Whether the series are Gaussian or Uniformly
distributed appears to make little difference for these results.

Based on these results, we computed the effective degrees of freedom for each data type
(spawners, ln (R/S), etc.) by calculating the variance from equation (2) for each of 63 pairwise
combinations (i.e., there are 63 possible pairwise correlations for the indicators for 16 stocks).
We did not allow the effective degrees of freedom to exceed the series length N.  We then use the
63 N*’s to calculate an average effective degrees of freedom (EDF) for that data type.  We then
compare this average N* to the average, uncorrected degrees of freedom, and calculate a ratio of
average N* to average uncorrected N.  To estimate the EDF for a given pairwise correlation, we
next calculate EDF(x,y) as (average N*/average N) * (N(x,y)).  This EDF(x,y) is then used  to
calculate the significance of each correlation.

Results

Although the EDFs calculated from single series were biased low, they are our only source
of information for comparison of the relative EDF for the different streams (Table 2).  Some of
the Snake River streams had low EDFs as might be expected from the dominance of a linear
trend.  Note the low EDF for Bear Valley/Elk due to the dominant declining trend in Fig. 3.  In all
but two cases, detrending increased the EDFs, as would be expected.  In more than half the cases,
EDFs for logarithm of recruits per spawner was greater than that for spawners.  A striking
exception is the Wenatchee.

The EDF’s computed from pairs of series range from 18.5, for Ricker regression residuals,
to 25.5, for detrended spawners (Table 3).  In all cases, de-trending increased the EDF, as
expected.  It is somewhat surprising that the EDF of spawning escapement is roughly the same as
(actually slightly larger than) EDFs of the other types of series.  Since we had expected that
spawning escapement would have a lower EDF, we recomputed the mean group EDF for the
Snake River subbasin only, to see whether the other streams had inflated that EDF.  This resulted
in an EDF of 13.3, which is much less than the value of 20.4 in Table 3, but slightly greater than
the average value of the single series estimates in Table 2, 11.1.

The spatial pattern of covariability indicated by the spawning escapement data is
moderately consistent covariability between stocks within the three sub-basins, with some
covariability between the Snake River sub-basin and the Mid Columbia (Tables 4, 8).  Within sub-
basins there are fewer significant correlations in the detrended data, due to a decline in
correlation.  A decline in correlation between a raw series and a detrended series indicates the
relationship in the trends is the same as the relationship at higher frequencies, in this case a
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positive correlation.  The correlation between the Klickitat river and some of the Snake River
stocks, which is stronger in the detrended data, is notable because of the large distance between
the stocks (Fig. 1).

The spatial pattern in the logarithm of recruits per spawner is stronger than that in
spawning escapement (Tables 5, 8).  Correlations are uniformly higher, and more are significant.
The strongest relationships are within sub-basins with all streams significantly correlated with all
other index streams in their sub-basin for all three sub-basins.  Within sub-basins correlations in
the detrended data are again less in all cases except Poverty Flat.  The significant relationships
between Klickitat River and Snake River sub-basin stocks is again stronger in the detrended data.

The spatial pattern in the Ricker residuals is similar to that in the logarithm of recruits per
spawner except that there are fewer significant correlations between sub-basins (Tables 6, 8).  In
the correlations within sub-basins, the values of correlation for the  detrended data are almost the
same as the corresponding values for data without the trends removed.  This is probably due to
the fact that the trends in these data are less.  Covariability between the Klickitat and the Snake
River sub-basins is present in this data type also.

The spatial pattern in the ratio of spawning escapement in one year to spawning
escapement four years earlier differs from that of the raw spawning escapement data in that the
correlations within each sub-basin are stronger (Tables 7, 8).  It reflects the pattern in the
logarithm of recruits per spawner and the Ricker residuals better than the spawning escapement
data.  A possible drawback to its use as a replacement for recruitment data is the fact that it
indicates more between sub-basin relationships than the types of data involving recruitment.

In all of these types of data, the strongest inter-sub-basin relationships seem to be between
the Snake River sub-basin, and the Mid Columbia, with a lesser relationship with the John Day.
The Mid Columbia and the John Day are related to each other but not as strongly.  These
indications of inter-sub-basin relationships are weaker in the higher frequency series (i.e., the
series with trends removed, and the Ricker residuals).

Discussion

The dominant characteristic of the spatial pattern among these Columbia River
spring/summer chinook salmon stocks is covariability between survival indicators within the three
sub-basins.  This pattern is strongest in the three types of data directly reflecting survival, but is
clearest in the Ricker residuals.  The fact that this appears in data reflecting survival rather than
abundance is not surprising.  Survival varies from year to year, while abundance is the
cumulation of many random past survivals.  Covariability between sub-basins is only moderate,
but is strongest between the Snake river sub-basin and the Mid-Columbia.  The large distance
between the Klickitat River and the Snake River sub-basin suggest the unusual covariability
between these stocks may be spurious.

This analysis demonstrates the value of accounting for intra-series correlation.  The level
at which a correlation coefficient would have been termed significant for most of these series if
intra-series correlation were not accounted for is roughly 0.3 (Fig. 2, N=30).  With this as a
criterion, one can readily see that many more correlations would have been identified as
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significant, thus blurring the observed spatial patterns.  Also, if a more stringent criterion had
been applied to spawner abundance data from the Snake River stocks, as may be appropriate to
that data type with declining trends, even fewer relationships among spawner data would have
been identified as significant.

The similarity between the spatial pattern of covariability indicated by the analysis of
spawners in one year divided by spawners 4 years earlier is encouraging.  Note the similarity in
time series in Fig. 3.  Since there are spawner abundance data available for many more stocks for
which recruitment data (or ageing) is not available, analyses similar to this one can be performed
over a wider scale.  This ratio successfully detects covariability of survival reflected in logarithm
of recruits per spawner and Ricker residuals, but appears to be less selective than those data
types.  In our case, it may have been influenced by the slight variability in dominant age of
spawning among Columbia Basin stocks.

Although we have carefully accounted for effective degrees of freedom so that we could
weigh the relative importance of correlations with different types of data, the overall number of
degrees of freedom is much lower than the figures used due to a complete lack of accounting for
multiplicity of tests.  The results described here should not be considered a formal hypothesis test
in the sense that we have statistically proven that any of the results did not arise from chance
alone.  We consciously sacrificed the ability to do formal hypothesis testing for the sake of
searching for pattern among as wide a suite of geographical locations and data types as possible.
The next step would be testing these relationships through other means.
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Table 1. Performance of various methods of correcting for intraseries correlation. Mean Effective
Degrees of Freedom (EDF) and actual probability of Type I error for a series with no intraseries
correlation (i.e. white) and a four-point moving average generated from a Gaussian and a Uniform
Distribution

Gaussian Uniform

White
Series

MA4
Series

White
Series

MA4
Series

Uncorrected Mean EDF 36 36 36 36
Probability 0.050 0.295 0.045 0.258

j=5 Pairwise Correction Mean EDF 36.03 18.83 35.99 18.79
Probability 0.053 0.134 0.045 0.121

Single Series
Correction

Mean EDF 34.41 12.96 34.38 12.97

Probability 0.057 0.131 0.049 0.166
j=10 Pairwise Correction Mean EDF 36.58 12.16 36.38 12.05

Probability 0.057 0.039 0.047 0.047
Single Series

Correction
Mean EDF 28.95 9.34 28.84 9.31

Probability 0.023 0.058 0.025 0.071
j=30 Pairwise Correction Mean EDF 41.13 9.32 39.79 9.22

Probability 0.068 0.015 0.058 0.016
Single Series

Correction
Mean EDF 15.04 3.62 14.88 3.63

Probability <0.001 <0.001 <0.001 <0.001
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Table 2. Actual number of data points in spawning escapement and effective degrees of freedom
(EDF) of various data types estimated from the single series version of Eq (2).

Location Subbasin Years of
Data

Spawners Spawners
Detrended

Ln (R/S) ln(R/S)
Detrended

Snake
Bear Valley/Elk 32 6.09 22.38 15.75 16.83
Sulphur Creek 32 14.38 20.92 18.36 19.95
Marsh Creek 32 8.77 20.01 15.25 16.97
Minam 32 16.84 25.73 13.66 13.92
Imnaha 32 17.73 24.73 16.71 17.88
Johnson 32 8.41 25.26 22.04 21.53
Poverty Flat 32 4.97 12.32 20.2 20.22

Mid-Col.
Entiat 32 18.81 21.85 17.09 17.88
Methow 31 15.35 22.15 21.22 21.13
Wenatchee 32 24.12 23.85 7.68 23.06

BONN-MCN
Upper John Day 32 19.77 22.86 23.95 29.88
Middle Fork
John Day

32 16.99 18.18 22.43 21.99

North Fork John
Day

32 17.52 18.62 16.29 20.03

BONN-MCN
Warm Springs 22 9.4 10.09 9.18 10.11
Klickitat 25 19.25 19.23 12.01 12.02
Wind 21 15.35 16.31 12.95 14.3
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Figure 1.  A map of streams.
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Figure 2
.  The threshold value a correlation coefficient must have to be significant at each of three levels
for various effective degrees of freedom in the time series.
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Figure 3.  An example of different data types from an upriver index stream and a lower river index
stream.
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